Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Polymutants Reveal an Interplay between HopAD1 and AvrPtoB.

نویسندگان

  • Hai-Lei Wei
  • Suma Chakravarthy
  • Johannes Mathieu
  • Tyler C Helmann
  • Paul Stodghill
  • Bryan Swingle
  • Gregory B Martin
  • Alan Collmer
چکیده

The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered plant innate immune system by injecting a complex repertoire of type III secretion effector (T3E) proteins. Beyond redundancy and interplay, individual T3Es may interact with multiple immunity-associated proteins, rendering their analysis challenging. We constructed a Pst DC3000 polymutant lacking all 36 T3Es and restored individual T3Es or their mutants to explore the interplay among T3Es. The weakly expressed T3E HopAD1 was sufficient to elicit immunity-associated cell death in Nicotiana benthamiana. HopAD1-induced cell death was suppressed partially by native AvrPtoB and completely by AvrPtoBM3, which has mutations disrupting its E3 ubiquitin ligase domain and two known domains for interacting with immunity-associated kinases. AvrPtoBM3 also gained the ability to interact with the immunity-kinase MKK2, which is required for HopAD1-dependent cell death. Thus, AvrPtoB has alternative, competing mechanisms for suppressing effector-triggered plant immunity. This approach allows the deconvolution of individual T3E activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AvrPtoB: a bacterial type III effector that both elicits and suppresses programmed cell death associated with plant immunity.

Pseudomonas syringae pv. tomato DC3000 is a model pathogen for studying the molecular basis of plant immunity and disease susceptibility in tomato and Arabidopsis. DC3000 uses a type III secretion system to inject effector proteins into the plant cell. Type III effectors are thought to promote bacterial virulence by suppressing plant defenses and enhancing access to nutrients trapped in the pla...

متن کامل

Deletions in the Repertoire of Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Genes Reveal Functional Overlap among Effectors

The gamma-proteobacterial plant pathogen Pseudomonas syringae pv. tomato DC3000 uses the type III secretion system to inject ca. 28 Avr/Hop effector proteins into plants, which enables the bacterium to grow from low inoculum levels to produce bacterial speck symptoms in tomato, Arabidopsis thaliana, and (when lacking hopQ1-1) Nicotiana benthamiana. The effectors are collectively essential but i...

متن کامل

A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana.

The model pathogen Pseudomonas syringae pv. tomato DC3000 causes bacterial speck in tomato and Arabidopsis, but Nicotiana benthamiana, an important model plant, is considered to be a non-host. Strain DC3000 injects approximately 28 effector proteins into plant cells via the type III secretion system (T3SS). These proteins were individually delivered into N. benthamiana leaf cells via T3SS-profi...

متن کامل

Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death.

The AvrPtoB type III effector protein is conserved among diverse genera of plant pathogens suggesting it plays an important role in pathogenesis. Here we report that Pseudomonas AvrPtoB acts inside the plant cell to inhibit programmed cell death (PCD) initiated by the Pto and Cf9 disease resistance proteins and, remarkably, the pro-apoptotic mouse protein Bax. AvrPtoB also suppressed PCD in yea...

متن کامل

Genetic Analysis of the Individual Contribution to Virulence of the Type III Effector Inventory of Pseudomonas syringae pv. phaseolicola

Several reports have recently contributed to determine the effector inventory of the sequenced strain Pseudomonas syringae pv. phaseolicola (Pph) 1448a. However, the contribution to virulence of most of these effectors remains to be established. Genetic analysis of the contribution to virulence of individual P. syringae effectors has been traditionally hindered by the lack of phenotypes of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell host & microbe

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2015